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C Letellier, S Meunier-Guttin-Cluzel and G Gouesbet
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Abstract. Topological characterization is a useful description of dynamical behaviours as
exemplified by templates which synthesize the topological properties of very dissipative chaotic
attractors embedded in tri-dimensional phase spaces. Such a description relies on topological
invariants such as linking numbers between two periodic orbits which may be viewed as knots.
These invariants may, therefore, be used to understand the structure of dynamical behaviours.
Nevertheless, as an example, the celebrated period-doubling cascade is usually investigated by
using total twists which are not topological invariants. Instead, we introduce linking numbers
between an orbit, viewed as the core of a small ribbon, and the edges of the ribbon. Such a
linking number (which is in fact the C̃alug̃areanu invariant) is related to the total twist number
and the number of writhes of the ribbon. A second topological invariant, called the effective twist
number, is also introduced and is useful for investigating period-doubling cascades. In the case of a
trivial suspension of a horseshoe map, this topological invariant may be predicted from a symbolic
dynamics with the aid of framed braid representations.

1. Introduction

A deep knowledge of dynamical systems may be gained by using the topological properties
of the associated phase portraits. Since a chaotic attractor is built on a skeleton of periodic
orbits, this issue may be reduced to the study of the relative organization of periodic orbits.
Starting from the fact that a periodic orbit is a closed loop, it may be viewed as a knot and,
consequently, the knot theory may be used to describe the structure of the dynamics. This
is, however, restricted to the case when the phase portrait is embedded in a tri-dimensional
space since when the dimension is higher, all knots are trivial and all links are unlinked. In
this framework, Birman and Williams [1, 2] introduced a branched surface called a template,
on which all periodic orbits embedded within the attractor may be projected. A template
allows one to predict the linking numbers between pairs of periodic orbits [3–6]. Actually,
the linking-number concept is the relevant one used in this approach. A linking number is
a topological invariant, i.e. it is preserved under an ambient isotopy which relates a knot to
another one by a continuous deformation through embeddings. From a dynamical point of
view, such an invariant is therefore robust since it is not affected by a modification of the
control parameters when the involved periodic orbits are not implied in a bifurcation.

However, period-doubling cascades are usually investigated in terms of rotation numbers
of eigenvectors along periodic orbits [7], or of relative rotation numbers of other quantities
listed in [8]. The number of half-turns of the small ribbon generated by the end of one of
the eigenvectors is the so-calledtotal twist numberτ . Unfortunately, this number is not a
topological invariant. Instead, it is then desirable to use a topological invariant (preferably
easy to compute) to topologically describe period-doubling cascades (or other dynamical
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Figure 1. Topological structure of manifolds after bifurcations. (a) Local analysis of the
bifurcation. (b) Manifolds of the destabilized orbit after the bifurcation. (c) Manifolds of the
newly born orbit.

behaviours). In this paper, we then stress the interest of using (appropriately defined) linking
numbers and effective twist numbers rather than total twist. Effective twist numbers are
numbers defined as being the sum of the number of half-turns performed by the ribbon rotating
around its core (the orbit) plus twice the number of writhes.

This paper is organized as follows. In section 2 we present a concise description of the
mechanisms involved in a period-doubling cascade in terms of rotation numbers and symbolic
dynamics. Section 3 is devoted to the analysis of topological properties by using linking
numbers between an orbit, viewed as the core of a ribbon, and the edges of the ribbon.
Section 4 explains how these linking numbers may be predicted from symbolic dynamics
and how rotation numbers may be predicted in the case of a trivial suspension of a horseshoe
map. Section 5 concludes the paper.

2. Period-doubling structures

In a period-doubling bifurcation, a limit cycle is destabilized to a new limit cycle whose
period is twice the original period. The nature of the bifurcation may also be exhibited by
using a Poincaré section in the neighbourhood of the original limit cycle. At the bifurcation,
the characteristic multiplier is exactly equal to(−1). Slightly after the bifurcation, the
characteristic multiplier is real and negative. The first-return map to a Poincaré section then
takes a point A to a point B, as depicted in figure 1(a) with points A and B located alternatively
with respect to the original periodic point. In the most simple case, the manifolds of the
destabilized orbit undergo one half-revolution around it. Each manifold then locally lies on a
Möbius band with only one side and one edge (figure 1(b)), generating a strip whose topology
is unchanged up to the next bifurcation involving this periodic orbit. More generally, after a
period-doubling bifurcation, each manifold of the destabilized orbit necessarily rotates an odd
numberτ of half-turns per cycle.

After the bifurcation, a new periodic orbit is born. The ribbon associated with this newly
born stable orbit may be obtained by splitting the Möbius band displayed in figure 1(b) along
the core (the destabilized orbit). This process generates a ribbon with an even number of
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Figure 2. Generating partition of the logistic map induced by
its differentiable maximum C (µ = 3.8).

half-turns, i.e. with two sides and two edges (figure 1(c)). Manifolds of the newly born orbit
whose period is twice the period of the destabilized orbit then undergo an even number of half-
turns. Since a manifold of a stable orbit must undergo an odd number of half-turns to allow a
destabilization of the orbit by a period-doubling bifurcation, as required by the characteristic
multiplier being equal to(−1) at the bifurcation, manifolds have to topologically evolve when
a control parameter is varied to the next bifurcation. More specifically, one half-turn has
to be added or deleted before the occurrence of a new period-doubling bifurcation. Such a
local description is quite useful to understand the mechanism of the period-doubling cascade
and explains why many investigations of period-doubling cascades are achieved by using the
number of half-turnsτ , i.e. the total twist number [7,9–11].

Another useful tool to describe a period-doubling cascade, and more generally any kind
of bifurcation, is the symbolic dynamics. Let us introduce it in the simple case of the logistic
map. The logistic map is a unimodal map with a differentiable maximum

xn+1 = f (xn) = µxn(1− xn). (1)

This map is associated with a horseshoe dynamics. It may be viewed as a first-return map
to a Poincaŕe section of a flow, and is constituted by an increasing monotonic branch and by
a decreasing monotonic branch separated by acritical point C at the maximum of the map
(figure 2) with coordinatexc. This critical point induces a generating partition which allows
one to encode all trajectories{xn} by a string of symbolsσ0σ1σ2 . . . σn . . . , where

σn =
∣∣∣∣ 0 if xn < xc
1 if xn > xc

(2)

except the orbit associated with the iteration of the critical point C. When a suspension of
a unimodal map (or equivalently a horseshoe map) is considered, it may be shown that the
increasing branch is associated with a strip with an even number of half-turns and the decreasing
branch with a strip with an odd number of half-turns [12].

Rigorously, the aforementioned symbolic dynamics may be used for control parameter
values for which the invariant set is hyperbolic. In practice, a periodic orbit may be encoded
by a string corresponding to control parameter values for which the orbit is unstable. When a
period-p orbit is born at the very moment of a bifurcation, it is associated with a string, such
that

x1 = f (xc) x2 = f 2(xc), . . . , xp = f p(xc) = xc (3)

wherexc is the coordinate of the critical point C and the functionf denotes the map. More
generally, a string{σn} = σ1σ2 . . . σp is used to encode a period-p orbit (among the other
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(p − 1) cyclic permutations). For instance, the period-4 orbit generated after two period-
doubling bifurcations is encoded by using the stringσ1σ2σ3σ4 which corresponds to the
symbolic sequence (1011).

Let us now briefly describe how a period-doubling cascade is encoded starting from the
period-2 orbit. This orbit is encoded on62 = {0, 1} as (10) after its birth. Just after the
next bifurcation, its daughter is encoded by 1010, i.e. the symbolic sequence of the mother
is repeated twice. One may then remark that the orbit is encoded by an even sequence, i.e.
with an even number of 1s, each 1 being associated with a strip whose total twist is odd (the
number of 0s is irrelevant since each 0 is associated with a strip whose total twist is even). This
process corresponds to the mechanism previously described. The newly born period-4 limit
cycle is associated with a stable manifold which has to evolve until it exhibits an odd number of
half-turns, a condition which is compulsory to allow a new period-doubling bifurcation. This
evolution is associated with a periodic point (xp according to our convention) which passes
from one monotonic branch to the other, via the critical point C, leading to the following
symbolic representation:

1010→ 101C→ 1011. (4)

It may then be readily checked that the orbit 1011 (with an odd number of 1s) lies on a ribbon
rotating an odd number of half-turns around it. Ifn is the order of the bifurcation involved
in the cascade, the number of half-turns generated by passing the critical point is(−1)n, as
exhibited by the following encoding of the period-doubling cascade:

(1) n = 0
(10)← 1C← 11 n = 1

1010→ 101C→ (1011) n = 2
(1011 1010)← 1011 101C← 1011 1011 n = 3

...

(5)

After the accumulation point of the cascade, no other period-doubling bifurcation is possible.
Then, a saddle-node bifurcation creates a pair of periodic orbits. One of them is unstable and
lies on a ribbon with an even number of half-turns and the other is stable. The latter one is
thereafter destabilized by a new period-doubling bifurcation generating a new cascade. As a
consequence, in a pair of periodic orbits created by a saddle-node bifurcation, one is encoded
by an even symbolic sequence and the other by an odd symbolic sequence. For instance, there
exists a pair of period-5 orbits involved in a saddle-node bifurcation encoded by (10111) and
(10110). The second one, having an odd number of 1s, may then induce a period-doubling
cascade. The number of half-turns of the ribbons associated with each orbit in such a pair
differs by±1. The unstable periodic orbit (10111) is aregular saddlealso called the father
and the stable one (10110) is aflip saddlecalled the mother. The mother will have a daughter
encoded (10110 10111) generated by a period-doubling bifurcation.

3. Linking numbers

Investigating topological properties should preferably rely on topological invariants which do
not depend on the diagrammatic representation used. Unfortunately, the total twistτ is not a
topological invariant since it is not preserved under an ambient isotopy. This fact is exemplified
in figure 3 where a ribbon with a writhe and no half-turn (figure 3(a)) is isotopically changed
to a ribbon without any writhe but with a full twist (figure 3(b)) having a total twist equal to−2
(expressed in terms of half-turns). LettingLα (resp.Lβ) be the link constituted by the edges
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ααLedges edges

β
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Figure 3. Exchanging a writhe for a full twist under an isotopy. The periodic orbitα (resp.β) is
the core of the ribbon defined by the link formed by the edgesLα (resp.Lβ ). Ribbons defined by
edgesLα andLβ are topologically equivalent. (a) A writhe and (b) a full twist.

move I

move II

move III
Figure 4. Ambient isotopy of ribbons by using Reidemeister
moves. Move I changes a writhe to a full twist. These moves
are reversible.

of the ribbon, whose orbitα (resp.β) is the core, we have

τ(Lα) = 0 and ω(Lα) = −1

τ(Lβ) = −2 and ω(Lβ) = 0
(6)

whereτ(Lα) andτ(Lβ) are the number of oriented half-turns andω(Lα) andω(Lβ) are the
number of oriented writhes according to the convention:

-1 +1 (7)

As for knots, we may introduce Reidemeister moves for ribbons displayed in figure 4. Note
that the Reidemeister moves of type-II and type-III on the cores of the ribbons extend to the
ribbons themselves. Such a correspondence between the core and the ribbon does not exist for
the type-I move. Instead, a type-I move on the core generates a full twist on the ribbon.

Although move I implies that the total twistτ(Lα) is not a topological invariant, we see
that the sum of twice the number of writhes and the total twist defines a quantity which is
invariant under an isotopy. We, however, have two cases to consider depending on whether
the edges form a two-component link (as in figure 3) or a knot (as in figure 1(b)).

In the case of a regular saddle, the ribbon has two distinct edges which define a 2-
component linkLα. For an appropriate class of 2-component link made out of half-turns and
writhes associated with a core which may be reduced to a trivial knot by using Reidemeister
moves, a linking numberlk(Lα) between the two components of the link may then be defined
according to

lk(Lα) = 2ω(Lα) + τ(Lα) (8)

whereτ(Lα) is the total twist ofLα andω(Lα) is the number of writhes ofLα [13]. The
relation is slightly different here from the one used by Kauffman because the number of twists
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is counted in terms of half-turns rather than in terms of full-turns. In the case of the topologically
equivalent linksLα andLβ displayed in figure 3, we then havelk(Lα) = lk(Lβ) = −2. In fact,
this linking number is equal to the Cãlug̃areanu invariant [14] whose review is given in [15].
The number of writhesω(Lα) may be estimated by using the self-linking numberslk(α) of
the coreα which is defined as the algebraic sum of crossings on the coreα [15]. Note that
the self-linking numberslk(α) is expressed in terms of full-turns. Since the writhe number is
expressed in terms of full-turns, we haveω(Łα) = slk(α). Relation (8) may then be rewritten
as

lk(Lα) = 2slk(α) + τ(Lα). (9)

The self-linking number may be rewritten as

slk(α) = slk(αR) + ωR(Lα) (10)

whereαR is the minimal diagrammatic representation of the coreα, i.e. with the smallest
number of crossings, andωR(Lα) is the number of writhes vanished by moves I in the reduction
of the coreα to its minimal representationαR.

However, the linking numberlk(α) is useless when the edges form a knot as in figure 1.
This leads us to the introduction of another topological invariant. Postponing the case when
the edges form a knot, let us first introduce this topological invariant in the case when the
edges form a two-component link. Let the linkLα consist of two edgesE1 andE2. We then
define the topological invariant̃lk(Lα, α) as the sum of the two linking numberslk(E1, α) and
lk(E2, α), each one being the linking number between the coreα and one of the edges of the
associated ribbon, according to

˜lk(Lα, α) = lk(E1, α) + lk(E2, α). (11)

We call ˜lk(Lα, α) a quasi-linking number. It is an invariant because it is the sum of two
invariants. For orbitsα andβ displayed in figure 3, we havẽlk(Lα, α) = ˜lk(Lβ, β) =
lk(Lα) = −2. This quasi-linking number̃lk(Lα, α) also reads as

˜lk(Lα, α) = 1
2

∑
c∈Lαuα

ε(c) (12)

wherec ∈ Lα uα designates the crossings between the coreα and the two components ofLα,
self-crossings being ignored. Also,ε(c) is the sign of the crossingc with the usual convention,
i.e.

ε=+1 ε=−1 (13)

As for the usual linking numberlk(α, β) of two oriented knotsα andβ, the quasi-linking
number ˜lk(Lα, α) gives an intuitive notion of how many times the ribbon defined by the
link Lα winds aroundα. Also, the quasi-linking number̃lk(Lα, α) is expressed in terms of
half-turns involved in equation (8) to allow a description of Möbius bands by using integers.

Indeed, when a flip saddle is considered, the associated ribbon is a Möbius band and
has a single edge. Therefore, the edgesLα now generate a knot instead of a two-component
link. For large periodic orbits, the quasi-linking number˜lk(Lα, α) is still defined as the sum
of linking numbers betweenα and the componentsEi formed by the edges, as in the case of
regular saddles. However, since the edges form only one component, the quasi-linking number
˜lk(Lα, α) now reduces to an usual linking number defined between two knots in contrast with
the case of regular saddles where three knots are involved. As we see, an essential advantage of
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ααL βL β

(a) (b)

Figure 5. A pair of periodic orbitsα andβ which could be created by a saddle-node bifurcation,
where• designate negative crossings. (a) The regular saddle:̃lk(Lα, α) = 1

2(−4) = −2. (b) The
flip saddle:lk(Lβ, β) = 1

2(−6) = −3.

using ˜lk(Lα, α) is then that it is defined in the same way for regular and flip saddles, providing
a topological invariant of the same nature for both saddles. An example of a pair of periodic
orbits appearing in a saddle-node bifurcation is displayed in figure 5. The quasi-linking number
˜lk(Lα, α) for the regular saddle and the linking numberlk(Lβ, β) for the flip saddle differ by
±1, a feature which is characteristic of such an orbit pair. Since each self-crossing of the
coreα is associated with four crossings between edgesLα and the coreα, the quasi-linking
numbers may be rewritten as

˜lk(Lα, α) = 2slk(α) + τ(Lα) (14)

which is in agreement with relation (12).
More generally, by using the quasi-linking number˜lk(Lα, α) between an orbitα and the

edgesLα of the ribbon whose orbitα is the core, any periodic orbit may be topologically
characterized in any situation. In what follows, the terminology ‘linking number’is preferred
when the quasi-linking number reduces to a linking number in the strict sense.

4. Predicting linking numbers with a symbolic dynamics

The quasi-linking numbers̃lk(Lα, α) may be predicted from the symbolic sequence of the
coreα, by using the algebraic evaluation of linking numbers introduced in [17]. With this
procedure, the self-linking numbers may be predicted from the symbolic sequence of the orbit
considered and from the linking matrix describing the template of the attractor. The linking
matrix is a square matrixk × k, wherek is the number of monotonic branches exhibited on
a first-return map. Its elementsMij are defined as follows.Mii designates the number of
half-turns in theith branch of the template andMij is the sum of oriented crossings between
the ith and thej th branches (i 6= j ) [16]. Let us start by predicting the self-linking number
slk(α) whereα is a period-p orbit encoded by(σ1 . . . σp) on a set of symbols. In the case
considered here,k = 2. According to the algebraic evaluation proposed in [17], self-linking
numbers read as

slk(α) = Nlay(α) +

[∑
i,j

Mσiσj

]
i 6=j

(15)

whereNlay(α) is the layering crossing number counted on the layering graph of the template
(see figure 2 of [17]). The total twistτ(Lα) is equal to the number of half-turns induced by
the total twist of the branches of the template (see figure 2 in [17]). Indeed, when a segment
of the considered orbit passes a branch with half-turns, the ribbon associated with this orbit
also presents these half-turns. Consequently, the total twistτ(Lα) is given by

τ(Lα) =
p∑
i=1

Mσiσi . (16)
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Table 1. Quasi-linking numbers̃lk(Lαn , αn) for saddles involved in two period-doubling cascades.
See the main text for the other numbers also reported.αn must be replaced byβ when the regular
saddle is considered. In particular,τ(Lαn ) appears in equation (25) and(pn−qn) in equation (26).

Saddle n ˜lk(Lαn , αn) slk(αn) τ (Lαn ) (pn − qn) slk(αRn ) T (Lαn )

(0) regular 0 0 0 0 0 0
(1) 0 1 0 1 0 0 1
(10) 1 3 1 1 1 0 3
(1011) 2 13 5 3 2 3 7

3 51 23 5 4 19 13
4 205 97 11 8 89 27
5 819 399 21 16 383 53

(101) regular 6 2 2 2 0 6
(100) 0 5 2 1 2 0 5
(100101) 1 21 9 3 4 5 11

2 83 39 5 8 31 21
3 333 161 11 16 145 43
4 1331 655 21 32 623 85
5 5325 2641 43 64 2577 171

According to relation (14), the quasi-linking numbers then read as

˜lk(Lα, α) = 2

(
Nlay(α) +

[∑
i,j

Mσiσj

]
i 6=j

)
+

p∑
i=1

Mσiσi . (17)

The quasi-linking numbers may then be predicted with a symbolic dynamics and a linking
matrix (nevertheless, an algorithm implemented on a computer is required for large periodic
orbits). They are reported in table 1 in the case of the trivial suspension of a horseshoe map
corresponding to a template characterized by a linking matrix [16][

0 0
0 +1

]
. (18)

In table 1, the subscriptn recalls the order of the period-doubling bifurcation in the cascade
induced by the flip saddleα0 which has been created by a saddle-node bifurcation with a regular
saddleβ. Orbitsα0 andβ have a same periodp. Thus, after thenth bifurcation, the newly born
orbit has a period equal to (2n × p). For instance, the orbit characterized by(p = 3, n = 2)
arises from the cascade

Sβ = (101) Sα0 = (100) n = 0

Sα1 = (100 101) n = 1 (19)

Sα2 = (100 101 100 100) n = 2

whereSi is the symbolic sequence corresponding to the orbiti. The quasi-linking numbers
and the self-linking numbers are computed by using an algorithm implemented on a computer
involving the symbolic dynamics and the linking matrix of the template. The code detects
each oriented crossing on the template construction (explicit relationships have also been
demonstrated as reported in appendix A).

From table 1, one may remark that the quasi-linking numbers obey the recurrence law

˜lk(Lαn+1, αn+1) = 4 ˜lk(Lαn, αn) + (−1)m (20)
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Figure 6. The trivial flow as a suspension of a horseshoe map.

with ∣∣∣∣ m = n if lk(Lα0, α0) < ˜lk(Lβ, β)
m = n + 1 if lk(Lα0, α0) > ˜lk(Lβ, β) (21)

whereα0 designates the flip saddle andβ the regular saddle, both created in a saddle-node
bifurcation. It must be remarked that there is one exception. Indeed, this relation is valid for
all period-doubling bifurcations except in the case wheren < 2 for p = 1.

The total twistτ(Lαn) obeys a recurrence law

τ(Lαn+1) = 2τ(Lαn) + (−1)m. (22)

Using this number, a recurrence rule may also be exhibited for the self-linking numberslk(αn):

slk(αn+1) = 4slk(αn) + τ(Lαn) (23)

which is, in fact, the one proposed by [8].
In the remaing part of this section, we limit ourselves to the case of a horseshoe map

xn+1 = gµ(xn) (24)

which may be akin to a Poincaré map on a planar section of a flow. This may be viewed by
choosing the simplest embedding of the suspension ofg, yielding a flow connecting points at
time t = 0 andt = 1 with a trivial flow as displayed in figure 6. By trivial flow, we mean
a suspension of the horseshoe map without any global torsion, i.e. without any twist on the
unbranched part of the template.

Henceforth, we refer to this as the natural suspension ofg. This suspension creates a flow,
generating periodic orbits of infinitely many knot types.

It has been shown that it is possible to directly predict the quasi-linking number˜lk(Lα, α)
from a symbolic dynamics. Another useful topological invariant may also be computed. It
counts the number of half-turns the ribbon locally rotates arount its coreα when this latter is
reduced to its minimal representationαR (this reduction annihilates the writhes). This number,
designated byT (Lα) and here called the effective twist number, is therefore equal to

T (Lα) = ωR(Lα) + τ(Lα) (25)

whereωR(Lα) is the number of writhes vanished by move I in the reduction of the coreα to its
minimal representationαR. Obviously, we haveT (Lα) = T (LRα ). This number is reported in
table 1 as well as the self-linking numberslk(αR) of the minimal diagrammatic representation
of the coreα. ωR(Lα) is, therefore, equal toslk(α)− slk(αR). Both of them may be predicted
from symbolic dynamics by using the concept of framed braid (even if the self-linking numbers
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1101 1110 10110111

1101 1110 10110111
(a) Braid (b) Closed braid

Figure 7. Periodic orbit (1011) represented as a braid. The periodic points on the base lines are
ordered following the unimodal order. Connections between upper base points and lower base
points are drawn from the template construction (all crossings are positive).

may be only hand-predicted for low periodic orbits and, consequently, an implementation of
the algorithm on a computer is required).

A braid is a regular representation of a link in which all strands travel monotically along
an axis. There is a theorem due to Alexander [18] according to which all knots and links
can be represented in such a fashion. The set of all braids onp strands has a group structure
associated with it: the braid group. For further details, see Ghrist and Holmes [19]. A positive
braid is one for which all crossings are positive as it occurs in the case of the periodic orbits
generated by the template displayed in figure 6.

To obtain a standard representation of a given periodic orbit generated by the horseshoe
template, the kneading theory may be used. All periodic points may then be ordered according
to the unimodal order to constitute the two horizontal base lines between which a geometric
braid is built in agreement with the horseshoe template. From upper base points, we draw
p strands to the lower base points by connecting a symbolic sequence to its first cyclic
permutation, following the template construction (figure 7). By connecting opposite ends
of the strands, in the standard way, we form a closed braid. Each closed braid is a knot or a
link.

The twisted structure of the periodic orbits in a braid may be exhibited by using framed
braids as explained by Tufillaroet al and Melvin and Tufillaro [5, 16]. A framed braid is a
braid with a positive or negative integer associated with each strand. This integer is called the
total torsion (of the strand) representing an internal structure of the strand. For instance, if
each strand is a physical cable, then we could subject this cable to a torsion force causing a
twist. In the present instance, the total torsion would represent the number of half-turns in the
cable.

Geometrically, a framed braid can be represented by a ribbon graph. Take a braid diagram
as displayed in figure 8(a) and replace each strand by a ribbon (figure 8(b)). To represent the
torsions, we twist each ribbon by an integer number of half-turns. We will use these framed
braids as a useful representation to reduce the periodic orbits to their minimal knot diagrams
taking into account the torsion of the ribbon whose orbit is the core.

Noting that move II and move III do not change the framing of implied strands and that
move I induces a variation of±2 (+2 for a positive braid as here) of the framing, depending
on the sign of the writhe (figure 9), we simplify the periodic orbits as exemplified in the case
of the orbit (1011) displayed in figure 10. After a simplification, a number of half-turns, equal
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+1 +1 -20

(a) Framed braid (b) Ribbon graph

Figure 8. Geometric representation of a framed braid as a ribbon graph. The integer attached to
each strand is the sum of the half-turns in the corresponding branch of the ribbon graph (adapted
from Tufillaroet al [5]).

~
Move I

p’ p p+p’+2 +1 +3
+1

+1 +6

~
+ Move I

Move III 

+1 +1 +1
0

~
Move I

Figure 9. Reduction of the number of strands by using a
move I changing a writhe to a full twist.

Figure 10. Reduction of the period-4 orbit (1011) by
using Reidemeister moves. The framed braid is used
to give a schematic view of this process. The number
T (1011R) is found to be equal to +7 as reported in table 2
(p = 1, n = 2).

to the sum of the framing of each strand, is exhibited: it corresponds to the effective twist
numberT (Lα) of the orbitα.

By using the Reidemeister moves, the orbit diagram has been simplified to a minimal
diagram. Its corresponding framed braid has two strands. This minimal number of strands is
an invariant which is called thebraid index[19]. Given a braidβ, the braid indexb(β) is the
smallest integerq such thatβ has a presentation as a braid onq strands. The braid index is
usually different from the dynamical periodp of a given period-p orbit which is a dynamical
invariant, though not an isotopy invariant.
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Ghrist and Holmes [19] demonstrated that the braid index may directly be obtained from
the symbolic dynamics. Given a knot encoded by a word

S = 0n11m10n21m2 . . .0nk1mk

syllables are defined to be of the form 0n1, 0n12 and 12, for arbitraryn > 0. Then each word
(except the trivial words 0–1) has a unique decomposition into such syllables and each syllable
in the word corresponds to a single strand on the well disposed braided template.

Proposition. The braid index of a horseshoe knotK is equal to the number of syllables inS.

For instance, the orbit (1011) may be decomposed in two syllables 01 and 12:

0111≡ 01 · 12.

Its braid indexb(1011) is therefore equal to 2 as displayed in figure 10. The case of orbit
(1011 1010) is given in appendix B. Up to now, the prediction of quasi-linking numbers
˜lk(Lα, α) is limited to the special case of a trivial suspension of a horseshoe map since the
proposition is only valid in this case.

One may remark that each time a strand is removed, a move I is implied exchanging a
writhe to a full-twist. From equation (25), it is then found that the effective twist number
T (Lα) exhibited on the simplified framed braid of a period-p orbit α is given by

T (Lα) = 2(p − q) + τ(Lα) (26)

whereq is equal to the braid index. The effective twist numbersT (Lα) may therefore be
predicted by using the symbolic dynamics. Effective twist numbersT (Lα) are reported in
table 2 in the case of a trivial suspension of a horseshoe map.

In order to distinguish orbits created in a cascade generated by different pairs of saddles
whose period are equal, we introduce a subscript which indicates their relative order according
to the unimodal order. For instance, the pair (Sβ = (10111), Sα0 = (10110)), associated with
p = 51 appears before the pair (Sβ = (10010), Sα0 = (10011)), associated withp = 52.

By inspecting table 2, one may check that the effective twist numbersT (Lα) satisfy a
recurrence relationship (excepted forp = 1, n = 1):

T (Lαn+1) = 2T (Lαn) + (−1)m. (27)

From (27), a second rule may be derived, reading as

T (Lαn+2) = 2T (Lαn) + T (Lαn+1). (28)

The origin of the recurrence relationship (28) may then be exhibited by the symbolic
sequences since all periodic orbits implied in a period-doubling cascade are encoded by a
word of the form

Sn+1 ≡ Sn · Sn−1 · Sn−1 (29)

whereSn designates the word of thenth periodic orbit arising in the period doubling cascade.
Note that the relation (28) is valid forn > 0 for the cascade generated by the orbit (1) and for
anyn for all the other cascades (some of them are reported in table 2). From table 1, one may
extract the following relation:

slk(αn) = slk(LαRn ) + (pn − qn). (30)

Also, a recurrence law is found to be obeyed by the self-linking number of the reduced orbit
αR:

slk(αRn+1) = 4slk(αRn ) + T (Lαn). (31)
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Table 2. Effective twist numbersT (Lα) of orbits whose period is less than 8 for a trivial suspension
of a horseshoe map.n designates the order of the period-doubling bifurcation in the cascades and
p means the topological period of orbits involved in the pair(α0, β) created by a saddle-node
bifurcation whereα0 is the flip saddle andβ is the regular saddle.

T (Lαn )

p Regular T (Lβ) Flip n = 0 n = 1 n = 2 n = 3 n = 4

1 (0) 0 (1) 1 3 7 13 27
3 (101) 6 (100) 5 11 21 43 85
4 (1001) 8 (1000) 7 15 29 59 117
51 (10111) 8 (10110) 7 15 29 59 117
52 (10010) 8 (10011) 9 17 35 69 139
53 (10001) 10 (10000) 9 19 37 75 149
61 (101110) 6 (101111) 7 13 27 53 107
62 (100111) 12 (100110) 11 23 45 91 181
63 (100010) 10 (100011) 11 21 43 85 171
64 (100001) 12 (100000) 11 23 45 91 181
71 (1011111) 14 (1011110) 13 27 53 107 213
72 (1011010) 12 (1011011) 13 25 51 101 203
73 (1001011) 12 (1001010) 11 23 45 91 181
74 (1001110) 12 (1001111) 13 25 51 101 203
75 (1001101) 14 (1001100) 13 27 53 107 213
76 (1000100) 12 (1000101) 13 25 51 101 203
77 (1000111) 14 (1000110) 13 27 53 107 213
78 (1000001) 14 (1000000) 13 27 53 107 213

Table 3.

n 0 1 2 3 4 5 6 7 8 9

m type 0 1 1 3 5 11 21 41 83 165
M type 0 1 3 5 11 21 41 83 165 331

Another layer may be proposed to predict the effective twist numberT (Lαn) with respect
to the ordern. It reads as

T (Lαn) = 2n ˜lk(Lα0, α0) +Kn (32)

whereKn is a number verifying a Fibonacci series. Again, two classes of period-doubling
cascades are distinguished. Indeed, the numberKn may be obtained forn > 3 with seeds
K1 = 1 andK2 = 1, when ˜lk(Lα0, α0) < ˜lk(Lβ, β) and withK1 = 1 andK2 = 3, when
˜lk(Lα0, α0) > ˜lk(Lβ, β). If we designate the first class of period-doubling cascade being of
the minor (m) type and the second one of the major (M) type, the numberKn is then equal to
the values shown in table 3.

This table may be obtained from relations (26) and (32).
We conjecture that in the bifucation diagram, M-type and m-type cascades alternatively

appear.

5. Conclusion

Topological invariants must be preferred to investigate topological structures rather than other
quantities which are not topological invariants such as total twist. As a consequence, a quasi-
linking number ˜lk(Lα, α) between the edgesLα of a ribbon whose orbitα is the core and
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Figure A1. Partially closed braid for the orbit (1011 1010).

this orbit has been introduced to study period-doubling cascades. Of course, this topological
invariant may be used to investigate the relative organization of any periodic orbit in any kind of
attractor. Its great advantage is that it does not depend on the diagrammatic representation, in
contrast with total twists which are often used in investigating period-doubling cascades. When
a trivial horseshoe template is considered, quasi-linking numbers˜lk(Lα, α) may be predicted
from the symbolic sequences of orbits. The effective twist number counting the number of
half-turns the ribbon locally rotates around its core reduced to its minimal form, may also be
predicted with symbolic dynamics but this last result is, however, still of limited significance
since the braid index, required for predictions, may, up to now, only be computed from symbolic
sequences for trivial horseshoe templates. Nevertheless, the effective twist number provides
more information than the total twist number since all dynamical information is preserved
under Reidemeister moves.
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Appendix A. Explicit relations for period-doubling cascades

The self-linking numbersslk(αn) andslk(αRn ) presented in table 1 may indeed be predicted
from symbolic dynamics but this has been done with the aid of a computer program for large
periodic orbits. In the case of the period-doubling cascade generated by orbit (1) for the
horseshoe template of figure 6, it has, however, been possible to rigorously establish, by hand-
calculations, analytical expressions for the above self-linking numbers [20]. The demonstration
is too lengthy to be provided here but a sketch of it is given below.

Let us consider the braid associated with the period-8 orbit encoded by (1011 1010) given
in appendix B (n = 3). Instead of reducing it, let us partially close the braid, the closure
involving the four leftmost strands (i.e. half of the strands). We then obtain the partially closed
braid displayed in figure A1.

This structure exhibits three patterns:

(i) Pattern I. This pattern defines a braid with four strands such that the rightmost point at the
top of the braid is connected to the leftmost point at the bottom of the braid, and so on,
defining a half-turn applied to the block of strands.

(ii) Pattern C. This patterns exhibits four curls.
(iii) Pattern R. The total braid two generations before (i.e. forn = 1).

We established that the pattern of figure A1 occurs at all levelsn > 1. More specifically, the
sub-pattern I exhibits 2n−1 strands and the sub-pattern C exhibits 2n−1 curls. The self-linking
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numberslk(αn) is the sum of the number of crossings in each sub-pattern. We then readily
obtain

slk(αn) = 2n−2[2n + 2n−1− 1] + slk(αn−2) (A.1)

with initializations

slk(α0) = 0

slk(α1) = 1.
(A.2)

The recurrence relation (A.1) may also be given a two-step form according to

slk(αn) = 6slk(αn−1)− 8slk(αn−2) + (−1)m (A.3)

with m = n + 1 and the same initializations.
These recurrence relations may be explicitly solved, leading to

slk(αn) = 4n+1

10
− 2n+1

6
+
(−1)n+1

15
(n > 1). (A.4)

The partially closed braid may be simplified to a reduced braid by removing the curls.
After such a removal, we established that no further simplification is possible. Therefore, we
have

slk(αn)− slk(αRn ) = 2n−1 (n > 0). (A.5)

We subsequently establish

slk(αRn ) = 6slk(αRn−1)− 8slk(αRn−2) + (−1)m (A.6)

with m = n + 1 and the initializations

slk(αR0 ) = slk(αR1 ) = 0
slk(αR2 ) = 3

(A.7)

having the explicit solution

slk(αRn ) =
4n+1

10
− 5

12
2n+1 +

(−1)n+1

15
(n > 1). (A.8)

For the cascade starting from the orbit (100), it is empirically found (table 1) that the self-linking
numberslk(αn) obeys relation (A.3) withm = n and initializations

slk(α0) = 2

slk(α1) = 9
(A.9)

having the explicit solution

slk(αn) = 13

5
4n − 2

3
2n +

(−1)n

15
(n > 0). (A.10)

Also, slk(αRn ) obeys relation (A.6) withm = n and the initializations

slk(αR0 ) = 0
slk(αR1 ) = 5

(A.11)

having the explicit solution

slk(αn) = 13

5
4n − 8

3
2n +

(−1)n

15
(n > 0). (A.12)

Due to the similarity between the relations for the cascade starting from (1) and the cascade
starting from (100), we conjecture that equations (A.10)–(A.12) are true. It is likely that they
could be established in a way similar to the one used for equations (A.1)–(A.8).
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~
Move I

~ ~

~
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Move I

Figure B1. Simplification of the period-8 orbit encoded by (1011 1010). The orbit cannot be
reduced to the trivial knot. Its braid index is equal to four as predicted by the decomposition in
syllables reading as 011· 1 · 01 · 01.

Appendix B. Simplification of the period-8 orbit

In figure B1 we show the period-8 orbit encoded by (1011 1010).
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